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30- Study based on ISO-New England

1) Solar forecast improvement leads to increased savings
* Fuel costs
« Startup and shutdown costs
* Variable operation and management (VO&M) costs

20- oolarPower .« | 2) Higher solar penetration leads to higher savings
18 3) Decreasing marginal value (savings) of improving forecast
=2 13.5
2> 0
36 4.5 By 2030, WECC expects a 67% increase in renewables,

10 with 73% increase in solar and 178% in BTM solar

Annual Generation Cost Savings ($M)

**Comparing 2019/2020 installed capacity with 2030 WECC
Anchor Data Set (ADS)

————X

: pi A . o Need Methods for Improved Net-Load Forecast @Extreme Solar
Solar Power Forecast Uniform Improvement (%)

Source: Martinez-Anido et al,
Solar Energy, 2016.
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PNNL GRAF-Plan Tool Tool to assess the impact of uncertainty and variability on balancing reserves
S i
] I
3 I I
% : | M Native Load - BTM Solar BWind @ESolar HETota
5, | |
g ]
2 i | | Uncertainties are real-time
B | | I | :I | I : ‘ I I unpredictable fluctuations, and
- I drive the regulation reserves
IH WL ] : ||I II || III _

0|11 12

to the amount of solar output
* Note that regulation
requirement peaks in mid-day.

|’”||‘|(i3 | |D
» Uncertainties are proportional

Regulation Down in MW

[
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Hour of the Day

Source: Presentation by Nader Samaan at WECC PCM Data Work Group, 2020.
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PNNL GRAF-Plan Tool Tool to assess the impact of uncertainty and variability on balancing reserves
o e— - i
2, r I m Bative Load - BTM Solar B Wind ®@Solar M Tota
- I
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£ .
=
B Variability is gradual short-
F- term change in output, and
’é L RER I AR e rramaig oo
- papiginl following) reserves

the solar ramp rates
* Ramping requirement peaks
in the shoulder hours.

|

MW

:
I'D

I
II‘  Variability is proportional to
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Source: Presentation by Nader Samaan at WECC PCM Data Work Group, 2020.
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Al/ML in Net-Load Forecast: Some Key Features

Uncertainty

Probabilistic models that
can capture real-time
unpredictable fluctuations

Deployability

Deep models need to be
fast deployed in limited
data environment

\ AI/ML in Net-Load /
\ : /
. Forecasting ,

Variability

Deep models that can
capture gradual short-term

change in output

Explainability

Al/ML model outputs must
be interpretable to gain

trust of human operators
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- Data Availability vs. Model Complexity
= Architecture 1. Complex Model, High-Resolution (Larger) Dataset
» Deployable Al/ML via Transfer Learning

= Architecture 2: Simpler Model, Low-Resolution (Smaller) Dataset

\.

« Explainability of AI/ML Models

» Trust-Augmented AI/ML via Interactive Visual Analytics
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20
352 11X32
22X32 48X16

X= [el ..... oY,

40 LSTM unit,
followed by 10 LSTM unit

11X32 352 12X16

e e e e e e e e e e e e e e e A I
*
27> 1d convolution 5 ~ |

%> Maxpooling

Variational autoencoder
to learn uncertainties

Probabilistic
= < | Conv-LSTM to
learn variability

A Variational Recurrent Neural Network (VRNN) model that combines an Autoencoder and a
Long-Short-Term-Memory (LSTM) network with a kPF Algorithm (kPF-AE-LSTM)
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Model Training Loss Traintime | MAE | Norm | MAPE APE PBB CRPS
/epoch (s) | (kW) | MAE (%) | (%) | IQR(%) | (%)
PCLSTM CRPS 4.1 91 | 107 | 112 | 7.6 |7457|0.25
PCLSTM NeglLL 4 112 | 131 | 133 | 6.9 |73.23]0.39
CLSTM MAE 4.1 108 | 126 | 134 | 133 | NA |[NA
== YRNN _|_Recon+NeglL+Pred error | __ 2 7.8 L 26 |60 1 65 ___41__192323 013,
: VRNN Sequential training 4 5.6 6.4 6.6 4.1 93.43 | 0.12 :
(T T T T T T T T V("
| Prediction u Prediction o
 The proposed model outperforms the : i
benchmarks by ~30% in forecast accuracy -
« While still achieving the best-in-class ;E" m

Benchmark 2

Input window

Input window

Convolution-LSTM (CLSTM)

|

|

| Probabilistic CLSTM (PCLSTM)
- Aregular LSTM, with a 1- I

|

|

|
|
|
|
|
|
|
training efficiency (~4s) |
|
|
|
|
|
|

. . - A CLSTM that predicts the
CRPS = Continuous Ranked Probability Score, dimensional Convolution mean and variance of the
NegLL = Negative Log-Likelihood, MAE = Mean Absolute Error, layer added to the input forecast distribution

PBB = Probability between Bounds, IQR = Inter-Quartile Range S - - === —====== S ST
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DATASET TRAINED VRN3P MODEL
— . Transferring model trained on
8 _‘ > FRESHLY TRAINED FRESHLY TRAINED 8"-1 0 0
2 = CONVOLUTIONAL AE PROBABILISTICLSTM | |38 20% solar case to 30% solar case
~ 82
. B 2 20 y_ v & _ o
E I o > PRETRAINED memune n Only 25% of data used in training
5 — oo 22 transferred model
14
-
§ -. > FRESHLY TRAINED FRESHLY TRAINED %d A bI f H h
°o\° = CONVOLUTIONAL AE PROBABILISTIC LSTM Eé Ccepta e OrecaSt accuracy Wlt
" 6x speed-up in training time

(# samples) MAPE (sec/epoch) ***Seems to work only within the
30% BTM (Transferred) 8,800 2.15% 0.56 same (similar) weather zone
30% BTM (Fresh Trained) 35,040 1.57% 3.35
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Convolutional Autoencoder

B AW =S 39 QHQI x> X
20
352 11X32
22x32

1x32 352 12X16

X=ley,. ).,

/

Variational autoencoder
to learn uncertainties

Autoencoder based architecture

40 LSTM unit,
followed by 10 LSTM unit

8X16
a7xis 23X16 48 agxa

——— ground truth

90% confidence interval
0.5 4 80% confidence interval
70% confidence interval
0.0 - 60% confidence interval
—— mean prediction
o crps 0.089

10 20 30 40 50

1.0 -

XB
2> 1d convolution I3

199> Maxpooling
Il* Reshape

: - Dense

KkPF Algorithm, X
Algorithm 1

N

1| Probabilistic
r<| Conv-LSTM to

Architecture 1 (w/ AE)

Dilation Convolution based architecture

Architecture 2
(w/o AE)

——— ground truth

0.5 - 90% confidence interval
80% confidence interval
70% confidence interval
60% confidence interval

—— mean prediction

-0.5 4 crps 0.075

0 10 20 30 40 50
Number of Data points

0.0 -

Predicted Energy (normalized) Predicted Energy (normalized)
1 o

Simpler model (w/o AE) outperforms AE-
B 10 Dilsted Convlution Laver based model by achieving lower CRPS in

Il Dense (fully connected)

Il 1D output layer, guantile based prediction IOW'reSOI Uti O n data e nVi I'O n me nt
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1
- Convolutional Autoencoder 1 !
iB : 1
- g 1
X =ey 0y ..‘I : N N NN L N N N W N : : e 2
— T HRRR NN NT PP . = Autoencoder based architecture
: ® 32 1162 1 followed by 10 LSTM unit : g
: as e 1x32 352 1216 4816 e ‘BXAE : E 0_8 =1 Faae— ground truth
/ e o o 5 90% confidence interval
27> 1d convolution .
artational satoencod 1% Marpooling pro— - i : i 0.6 - N\\’/ 80% confidence interval
riation n r esha ] g . . -
o learn uncertainties ||[!mp oo , 2 70% confidence interval
I a3 ! 2 60% confidence interval
' w 0.4 - -
: a : Probabilistic Lo —— mean prediction
----------------------------- r | Conv-LSTM to ..g crps 0.039
H learn variability -
9 02 i T T T T T T T T T
ArChlteCture 1 (WI AE) &’ 0 25 50 75 100 125 150 175 200
T Dilation Convolution based architecture
= N 1.0 A
AI’Ch |teCtu re 2 g ~— ground truth
= 0.8 1 90% confidence interval
o
(W/ o AE) £ M 80% confidence interval
o 70% confidence interval
% 0.4 60% confidence interval
T —— mean prediction
£ 02 crps 0.0751
g Ll 1 T T 1 T T 1 T
a 0 25 50 75 100 125 150 175 200
Number of Data points
In high-resolution data, simpler model (w/o

[ 1D Dilated Convolution Layer AE) eXPECtedly dOeS Worse by aChieVing

Il Dense (fully connected)

Il 1D output layer, guantile based prediction higher CRPS than AE'based mOdeI
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- Data Availability vs. Model Complexity
= Architecture 1. Complex Model, High-Resolution (Larger) Dataset
= Deployable Al/ML via Transfer Learning

= Architecture 2: Simpler Model, Low-Resolution (Smaller) Dataset

+ Explainability of AlI/ML Models

* Trust-Augmented AI/ML via Interactive Visual Analytics
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FORTE <;;;0{3/202012 00AM 3] 01101;/202012 00AM [ 5>0°/r e SELECT OPTIONS Update-
Net Load (kW) @ Replay [ Freeze Y-axis temperature(°f)®  AddNoise v

— act

: - Select time-frame and solar penetration levels
- Choose from available AI/ML models
- Compare actual and predicted net-load

Add Noise ¥

| I
| 1
| |
' - Augment missing data with background knowledge |
' - Run experiments to perform model senS|t|V|ty to input data |
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Run experiments to perform model sensitivity to input data VIAE Heatmap | Temporature o I—
Sensitivity Analysis Vo Jobs  Create Job
Input Variables: ) Temperature |0 Humidity O Apparent Power
Dates: Start Date End Date
Months: Months
Noise Level: None - Number of Observations None
Noise Direction: () Bidirectional () Positive Direction () Negative Direction
Name: Name 0 P T e e s e e mm e mmm i — - - — - |
! Experlment Sensitivity to temperature :
|
Description: Description .Observatlon. Highest sensitivity in Jan/Jul, lowest in April/May |
|
' Explanation: Extreme weather in Jan and Jul drives energy :
l demand, causing high sensitivity. In contrast, milder weather in |
|
|

-Apnl/l\/lay leads to low temperature sensitivity of net-load
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Steps to Run this project

* Forte Interface is available on GitHub:
https://qithub.com/pnnl/Forte D ot i

4. Type this command in your terminal export FLASK_ENV=development (For Powershell, use $env:FLASK_APP
= "pyAPI\app4.py" )

1. Clone this project to your local machine

°® ) . . - 5. Type this command: export FLASK_APP=pyAPI/app4.py (For Powershell, use $env:FLASK_ENV =
u I Ca I O I I S u "development" )

6. Next, run flask using flask run

o Sen, Chakraborty’ Kundu, et al. "KP F_AE_LSTM: A ;:::x:):::hz::i:)f:z::;;e;:;n:;;r:;:;e::::(::TandtoinstalltheNodedependencies npm install
Deep Probabilistic Model for Net-Load Forecasting in

High Solar Scenarios." arXiv preprint
arXiv:2203.04401 (2022).

= Bhattacharjee, Dasgupta, Kundu, Chakraborty.
“Forte: An Interactive Visual Analytic Tool for Trust-
Augmented Net-Load Forecasting”, submitted to
ISGT (2024).

Interface
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